#### SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)



Siddharth Nagar, Narayanavanam Road – 517583

#### **QUESTION BANK**

**Subject with Code :** DICD (19EC4202) Course & Branch: M.Tech - ES

Year & Sem: I-M.Tech & II-Sem

#### <u>UNIT –I</u>

| 1.  | a) Draw the circuit for NMOS inverter and explain its operation.                    | 6M |
|-----|-------------------------------------------------------------------------------------|----|
|     | b) Compare the characteristics of the different types of MOS inverters in terms of  |    |
|     | noise margin and power dissipation.                                                 | 6M |
| 2.  | a) What makes dynamic CMOS circuits faster than static CMOS circuits?               | 6M |
|     | b) Draw the ideal characteristics of a CMOS inverter and compare it with the actual |    |
|     | characteristics.                                                                    | 6M |
| 3.  | Design a static CMOS circuit to realize the following functions:                    |    |
|     | a) $F = b + (a \cdot c) + ca$ .                                                     | 6M |
|     | b) XNOR gate.                                                                       | 6M |
| 4.  | a) Draw the circuit topology and explain the operation of CMOS domino logic.        | 6M |
|     | b) How clock skew problem is overcomes in domino CMOS circuits?                     | 6M |
| 5.  | a) Implement the 2-input NAND gate with CMOS logic and explain its working.         | 6M |
|     | b) What are the advantages of dynamic logic over static CMOS logic?                 | 6M |
| 6.  | a) With the help of diagrams, explain about static CMOS inverter.                   | 6M |
|     | b) Discuss about the performance of dynamic CMOS inverter.                          | 6M |
| 7.  | a) Implement the 2-input NOR gate with static CMOS and dynamic CMOS.                | 6M |
|     | b) How clock skew problem is overcome in NORA CMOS circuits?                        | 6M |
| 8.  | a) Construct a XNOR gate in dynamic logic and explain its working.                  | 6M |
|     | b) What are the problems associated with dynamic logic?                             | 6M |
| 9.  | a) How does the domino logic solves the problem in dynamic logic?                   | 6M |
|     | b) In which way NORA logic is power efficient? Explain with appropriate equations.  | 6M |
| 10. | . a) Design 4-to-1 MUX using CMOS transmission gate.                                | 6M |
|     | b) Compare the sources of power dissipation between static CMOS and dynamic CMOS. 5 | δM |

# <u>UNIT-II</u>

| 1. a) Illustrate the method of logical effort for transistor sizing.                                 |      |  |
|------------------------------------------------------------------------------------------------------|------|--|
| b) Explain the read/write operation of the SRAM cell.                                                | 6M   |  |
| 2. Prove that the delay of a series of pass transistors can be reduced from quadratic dependence     | e to |  |
| linear dependence on the number of transistors in series by inserting buffers at suitable intervals. | 10M  |  |
| 3. a) Explain about different strategies for building low power CMOS gates.                          | 6M   |  |
| b) Draw the circuit for 4 transistors SRAM and explain its working.                                  | 6M   |  |
| 4. a) Why low power has become an important issue in the present day VLSI circuit realization        | ? 6M |  |
| b) Explain how read and write operations are performed in a SRAM.                                    | 6M   |  |
| 5. a) Sketch the schematic diagram of a SRAM memory cell along with sense amplifier and              |      |  |
| data write circuitry.                                                                                | 8M   |  |
| b) Discuss about power consumption in CMOS gates.                                                    | 4M   |  |
| 6. a) What is meant by logical effort?                                                               | 6M   |  |
| b) Give the design considerations of a 4 bit SRAM with the help of CMOS logic diagram.               | 6M   |  |
| 7. a) Explain the logical effort of two – input NAND and NOR gates with neat circuit diagram.        | 6M   |  |
| b) In what way the DRAMs differ from SRAMs?                                                          | 6M   |  |
| 8. a) Explain about different strategies for building low power CMOS gates.                          | 6M   |  |
| b) Explain the read and write operations for a one transistor DRAM cell.                             | 6M   |  |
| 9. a) Explain with a neat sketch about the operation of the 6 transistor SRAM cell.                  | 6M   |  |
| b) Explain the design considerations of a 4 bit RAM with the help of CMOS logic diagram.             | 6M   |  |
| 10. a) What is short circuit power dissipation? On what parameters does it depend?                   |      |  |
| b) Draw one cell dynamic RAM circuit and explain its working.                                        | 6M   |  |

# <u>UNIT-III</u>

| 1. What is dynamic behavior of BiCMOS logic? Explain in detail with neat sketches.                 | 12M |
|----------------------------------------------------------------------------------------------------|-----|
| 2. Give the schematic diagram of different Bi-CMOS inverters. Explain its operation.               | 12M |
| 3. a) Compare the switching characteristics of a BiCMOS inverter with respect to that for static   |     |
| CMOS for different fan out conditions.                                                             | 6M  |
| b) Design NAND gate in BiCMOS logic.                                                               | 6M  |
| 4. a) Explain how to calculate the delay for the BiCMOS circuits.                                  | 6M  |
| b) Explain the concept of BiCMOS inverter.                                                         | 6M  |
| 5. Explain in detail how do we calculate power for BiCMOS and on what parameters                   |     |
| the power equation depends on?                                                                     | 12M |
| 6. Draw and explain the static and dynamic characteristics of BICMOS inverter.                     | 12M |
| 7. a) Discuss about delay and power consumption in BICMOS logic circuits.                          | 6M  |
| b) List the advantages and disadvantages of BiCMOS.                                                | 6M  |
| 8. Explain the working principle of BiCMOS with the help of static and dynamic characteristics. 12 | 2M  |
| 9. Explain about bipolar gate design in detail with neat sketches.                                 | 12M |
| 10. What is static behavior of BiCMOS logic? Explain in detail with neat sketches.                 | 12M |

# **UNIIT-IV**

| 1. a) What are the general observations on the design rules?                                                |     |  |
|-------------------------------------------------------------------------------------------------------------|-----|--|
| b) Write about NMOS based design rules.                                                                     | 6M  |  |
| 2. a) Discuss about 'Mead Conway Design' rules for silicon gate NMOS process.                               |     |  |
| b) What is the need for design rules? Explain.                                                              | 4M  |  |
| 3. Design a CMOS logic gates for the function $F = \overline{(A + BC)D}$ . Also indicate the connections of |     |  |
| signals F, VDD and GND. Draw the stick diagram representation for the circuit designed.                     | 12M |  |
| 4. a) What are the CMOS based design rules?                                                                 | 4M  |  |
| b) Explain two input NAND gate with relevant Layout example.                                                | 8M  |  |
| 5. Draw the stick diagram for the following schematic using appropriate colors.                             | 12M |  |
| A - B                                                                                                       |     |  |
| 6. Write about:                                                                                             |     |  |
| (i) Area capacitance.                                                                                       | 6M  |  |
| (ii) Drive large capacitive load.                                                                           | 6M  |  |
| 7. a) What is the need of wired capacitance? Where it is used? Explain.                                     |     |  |
| b) What is area capacitance? Explain its significance in the layout design.                                 | 6M  |  |
| 8. Write about:                                                                                             |     |  |
| (i) Sheet resistance.                                                                                       | 6M  |  |
| (ii) Lambda based design rules.                                                                             | 6M  |  |
| 9. a) What is sheet resistance? Find out the expression $f_0$ the resistance of rectangular sheet           |     |  |
| in terms of sheet resistance.                                                                               | 6M  |  |
| b) Find out the capacitance of a MOS capacitor.                                                             | 6M  |  |
| 10. a) Implement the 2-input XOR gate for CMOS logic and explain its working.                               |     |  |
| b) Design Layout Diagram for above diagram with relevant colors.                                            | 6M  |  |

# <u>UNIT-V</u>

| 1. a) How to design a 4-bit shifter? Explain with schematic.                           | 6M |
|----------------------------------------------------------------------------------------|----|
| b) What is pipeline multiplier array? Explain.                                         | 6M |
| 2. a) Discuss about design approach of carry look ahead adder with neat sketch.        | 6M |
| b) Explain Booth's algorithm and its modified algorithm.                               | 6M |
| 3. a) Compare different types of CMOS subsystem shifters.                              | 6M |
| b) Discuss about design approach of 4 bit shifter.                                     | 6M |
| 4. a) Draw and explain the booth decode cell used for booth multiplier.                | 6M |
| b) Design a 4 bit CLA adder.                                                           | 6M |
| 5. a) Analyze the timing of this 4 bit CLA.                                            | 6M |
| b) Compare CLA with RCA and state its merits and demerits.                             | 6M |
| 6. a) Draw the circuit diagram of 4 bit Baugh-Wooley multiplier structure and explain. | 6M |
| b) Comment on the advantages and disadvantages of the multiplier.                      | 6M |
| 7. a) How to design the ALU sub-system? Give the process.                              | 6M |
| b) Design the sub-system Serial Parallel Multiplier.                                   | 6M |
| 8. a) Analyze the timing of the array multiplier.                                      | 6M |
| b) Explain the modified booth algorithm.                                               | 6M |
| 9. a) Construct 4-bit SISO and explain its operations.                                 | 6M |
| b) With a neat sketch explain the working of array multiplier.                         | 6M |
| 10. a) Design the circuit diagram of logarithmic shifter using CMOS logic.             |    |
| h) Explain what is subsystem design process.                                           | 6M |

**Prepared by: G.LEENA KUMARI**